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The genomic sequences of crops continue to be produced at a
frenetic pace. It remains challenging to develop complete annota-
tions of functional genes and regulatory elements in these
genomes. Chromatin accessibility assays enable discovery of func-
tional elements; however, to uncover the full portfolio of cis-
elements would require profiling of many combinations of cell
types, tissues, developmental stages, and environments. Here,
we explore the potential to use DNA methylation profiles to de-
velop more complete annotations. Using leaf tissue in maize, we
define ∼100,000 unmethylated regions (UMRs) that account for
5.8% of the genome; 33,375 UMRs are found greater than 2 kb
from genes. UMRs are highly stable in multiple vegetative tissues,
and they capture the vast majority of accessible chromatin regions
from leaf tissue. However, many UMRs are not accessible in leaf,
and these represent regions with potential to become accessible in
specific cell types or developmental stages. These UMRs often oc-
cur near genes that are expressed in other tissues and are enriched
for binding sites of transcription factors. The leaf-inaccessible
UMRs exhibit unique chromatin modification patterns and are
enriched for chromatin interactions with nearby genes. The total
UMR space in four additional monocots ranges from 80 to 120
megabases, which is remarkably similar considering the range in
genome size of 271 megabases to 4.8 gigabases. In summary,
based on the profile from a single tissue, DNA methylation signa-
tures provide powerful filters to distill large genomes down to the
small fraction of putative functional genes and regulatory elements.

DNA methylation | chromatin accessibility | cis-regulatory elements

There is a rapidly growing knowledge of the genome structure
and sequence for many organisms. However, to fully utilize

this resource, it is critical to identify and annotate the functional
elements within the genome. In particular, there are two major
challenges in providing high-quality annotations of functional ele-
ments in complex eukaryotic genomes: correctly identifying func-
tional genes and identification of cis-regulatory elements (CREs).
The challenge of identifying functional genes relates in part to

the enigmatic concept of a gene. While classical definitions of a
gene were commonly based on mutant phenotypes, it is clear that
genetic redundancy or environment-specific phenotypic mani-
festations complicate our ability to identify phenotypes, even for
functionally important genes. Genomics-based efforts to define
gene models are often based on a combination of evidence of
transcripts and/or ab initio predictions. Yet, gene models are
best considered a hypothesis as to the existence of a gene (1). By
and large, the majority of functional gene products can likely be
captured based on identification of putative genes that are con-
served in similar order among related species, often termed syn-
tenic genes (1). However, there are also cases of functional genes
that are created following gene duplication and/or transposition
that are common in many plant genomes. One potential solution
is to identify putative genes through genome-wide annotation and
then to use chromatin features to filter the genes to highlight

models that are more likely to retain function. These approaches
have been applied in sorghum (2) and maize (3).
The problem of identifying potential CREs is even more

challenging. In plants with large genomes, CREs can occur tens
to hundreds of kilobase pairs (kb) from their target genes (4).
These regulatory regions, including gene-distal (hereafter distal)
CREs, have established roles in domestication and agronomic
traits, for instance in Zea mays (maize) (5–11). Although only a
handful of distal CREs have been characterized, recent studies
suggest their prevalence in plants (4, 12–17). Yet, these regions
do not necessarily produce easily detectable products (like
transcripts) or have sequence features that can be identified,
such as protein-coding potential. Several approaches that survey
accessible chromatin (12, 13, 17) or interactions of intergenic
regions with gene promoters (18–20) are providing major in-
sights for the identification of putative CREs. However, many of
these technologies are specific to the tissue or cell type that is
assayed. A complete understanding of the potential CREs within
a particular species would require profiling of chromatin acces-
sibility and/or chromatin interactions in a wide variety of tissues,
cell types, and conditions.
Although chromatin accessibility, histone modifications, and

chromatin interactions often show substantial variation in dif-
ferent tissues (12, 14, 21), the majority of DNA methylation
patterns are quite stable in plant species, especially during veg-
etative development (22–24) and in the face of environmental
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stress (25–28). Likewise, prior reports have identified large DNA
methylation “valleys” that are stable over development (29).
There are well-characterized examples of specific changes in
DNA methylation in endosperm tissues (30, 31) as well as in
specific cell types in plant gametophytes (32–36). However, the
majority of DNA methylation patterns are quite stable in dif-
ferent vegetative tissues, especially for DNA methylation in the
CG and CHG contexts. In contrast, several studies have provided
evidence for developmental or tissue-specific changes in CHH
methylation (37–42). It should be noted, however, that the ma-
jority of these examples point to cases in which the level of CHH
methylation at specific regions changes, but these regions often
have some level of CHH methylation in all tissues (24, 38).
Prior studies have found that the majority of regions of

chromatin accessibility are hypomethylated (4, 12, 13, 17). Here,
we reverse the approach and identify the unmethylated regions
(UMRs) of the maize, barley, sorghum, rice, and Brachypodium

genomes and compare the genomic distribution of UMRs with
tissue-specific chromatin accessibility and provide evidence for
functional roles of UMRs. We demonstrate that unmethylated
regions of the genome, particularly in plant species with large
genomes, provide useful information for identification of func-
tional genes and CREs. This improves annotation of complex
crop genomes and provides clear hypotheses about the portions
of the genome that likely contain functional elements.

Results
In general, the maize genome is highly methylated, with only a
small portion of the genome lacking DNA methylation (43–45).
Deep whole-genome bisulfite sequencing (WGBS) was performed
on seedling leaf tissue of the inbred B73, which generated ∼930
million reads, providing ∼28× projected raw average coverage per
strand (15.7× per cytosine average coverage following alignment
and quality filtering; Dataset S1). DNA methylation levels in the

A

B
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D

Fig. 1. Identifying unmethylated regions in the maize genome. (A) Example distribution of unmethylated regions (UMRs) in a 100-kb locus of the maize
genome. DNA methylation context: blue, CG; green, CHG; orange, CHH. Under each methylation track, the 100-bp tiles with sufficient data to assess UMR
status are shown in gray. (B) Pipeline overview of unmethylated region identification in maize leaf. (C) Genomic distribution of UMRs. Proximal UMRs are
defined as those that overlap a 2-kb window upstream of the TSS or 2 kb downstream of the TTS (44.5%, n = 47,910), genic are entirely within the gene locus
boundaries (24.4%, n = 26,298), and distal are >2 kb from a gene (31.0%, n = 33,375). (E) Percentage of UMTs (100-bp tiles) that overlap transposable el-
ements (TEs). TIR, terminal inverted repeat; LINE, long interspersed nuclear element; LTR, long terminal repeat; SINE, short interspersed nuclear element;
10.7% overlap TEs, including 6.08% LTR, 3.50% Helitron, 1.02% TIR, 0.0388% LINE, 0.0272% SINE, and 0.0584% multiple TEs from different orders.
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CG, CHG, and CHH context were determined for each 100-bp
tile of the maize genome. While some regions lack cytosines in this
context or could not be assessed due to lack of uniquely mapping
reads, we were able to obtain DNA methylation estimates for
16.03 million tiles—∼1.6 Gb—that contained at least two cyto-
sines and an average of at least 5× coverage per cytosine per
strand, representing 76.1% of the maize genome. A visual exam-
ination of a representative ∼100-kb region containing two genes
revealed that the majority of tiles are highly methylated; however,
there are examples of unmethylated regions near syntenic genes

and in distal regions (Fig. 1A). Across the maize genome, 8.19% of
the 100-bp tiles with data—131 Mb—had very low (<10%) or no
detectable DNA methylation in any sequence context, termed
unmethylated tiles (UMTs; Fig. 1B and SI Appendix, Fig. S1A). In
all analyses of unmethylated regions, we solely focus on tiles with
data; tiles with missing data due to lack of cytosines or lack of
coverage are not classified as unmethylated. We developed a
framework to identify the unmethylated regions (UMRs) in a
genome by first hierarchically categorizing each tile into one of six
methylation domains (Methods and Dataset S2) and then merging

A D
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F

Fig. 2. Comparisons of unmethylated and accessible portions of the maize genome. (A) Overlap of unmethylated regions (UMRs) in two independent maize
seedling leaf samples, “Rep 1” and “Rep 2,” and a seedling root sample. The percentage of UMRs uniquely identified in one of the samples is listed in
parentheses. (Right) Overlap of leaf and root ACRs is shown for comparison. (B) For UMRs uniquely identified in one of the samples in A, the methylation data
(methylation domain) in the corresponding sample are displayed. For example, over 80% of the UMRs uniquely identified in Rep2 have missing data in Rep1.
(C) Overlap of accessible chromatin regions (ACRs) from maize leaf (n = 30,577), root (n = 32,547), and ear (n = 25,302). (D and E) Gene-proximal (D) and gene-
distal (E) UMRs from maize leaf capture the majority of both leaf ACRs as well as root- and ear-specific ACRs. Leaf UMRs were first overlapped with all leaf-
proximal (D) or -distal (E) ACRs, and the percentage of ACRs overlapping is listed. Next, “root-specific” (not in leaf) ACRs were overlapped with leaf UMRs;
then “ear-specific” (not in leaf or root) ACRs were overlapped with leaf UMRs. UMRs that do not overlap a leaf, root, or ear ACR are inaccessible (iUMRs) and
listed in red. (F) Example leaf iUMRs that mark regions that become accessible in other tissues, including regions 1 and 2 (red boxes) upstream of rap2.7. Scale
on the ATAC-seq tracks represents total read counts. (Inset) Relative gene expression FPKM of rap2.7 in leaf, root, and ear from the maize eFP browser.
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adjacent unmethylated tiles into unmethylated regions. We re-
stricted our analysis to 107,583 UMRs of at least 300 bp (detailed
inMethods), accounting for 5.8% of the maize genome (Fig. 1B, SI
Appendix, Fig. S1 A–D, and Dataset S3). Some unmethylated
regions <300 bp could mark functional elements, although we
have limited evidence for their functionality (SI Appendix, Fig.
S1 C and D). UMRs include many examples within genes, in gene-
proximal (within 2 kb) regions, and in distal regions at least 2 kb
from the nearest gene (Fig. 1 A and C). A more detailed inves-
tigation of the types of features overlapping with UMRs revealed
significant enrichment for syntenic genes and depletion within
intergenic regions (SI Appendix, Fig. S1E). Only a small propor-
tion (10.2%) of the unmethylated 100-bp tiles are found to overlap
a variety of transposable elements (TE) from different orders
(Fig. 1D), but, given the expectation that TEs are highly methyl-
ated, it was interesting to note that there are 20,232 UMRs in total
(18.8%) that overlap maize TEs.

Comparisons of Unmethylated and Accessible Portions of the Maize
Genome. There is evidence for enrichment of functional elements
within accessible chromatin regions (ACRs) in maize (12, 13,
17). Several studies have found that these accessible regions tend
to be hypomethylated (12, 13, 17). A comparison of the UMRs
that are identified in B73 seedling leaf and root tissue using
available WGBS data (Dataset S1) (46) reveals very few changes
in UMRs between independent leaf samples or between tissues
(Figs. 1A and 2A). There are ∼3 to 4% of UMRs identified solely
in one of the samples; however, the vast majority of these were
due to missing data in the other sample (Fig. 2B). Less than 0.1%
of the UMRs from one tissue are classified as methylated in the
other tissue, suggesting relatively infrequent changes in the
UMRs among vegetative tissues in maize. Prior studies have found
very few examples of major changes in CG or CHG methylation
among vegetative tissues in maize or other plants (23, 24, 44).
UMRs differ just as much between biological replicates of leaves
as they do between two different tissues. In contrast, chromatin
accessibility profiles (Dataset S4) from three distinct tissues show
significant variability (Fig. 2C).
Given the different dynamics in tissue-specific chromatin ac-

cessibility and tissue-specific DNA methylation, we were inter-
ested in exploring if UMRs from a single tissue could capture
and predict potential ACRs in multiple tissues or conditions. We
assessed the overlap of the seedling leaf UMRs with ACRs from
three different tissues, including leaf and ear ACRs identified by
Ricci et al. (12) and ACRs identified in root (Dataset S3), for
gene-proximal (Fig. 2D) and gene-distal regions (Fig. 2E). As
expected, the vast majority of ACRs overlap with UMRs. Over
99% of the promoter ACRs and 92% of the distal ACRs iden-
tified in seedling leaf tissue overlap with a UMR defined in
seedling leaf tissue. Interestingly, when we focus on ACRs that
are found in root tissue (but not in leaf) or in ear tissue (but not
in leaf/root), we find that the vast majority of these are unme-
thylated in leaf tissue as well, despite being inaccessible in leaf
(Fig. 2 D and E). Examination of DNA methylation and ATAC-
seq data for several UMRs that exhibit accessibility solely in
nonleaf tissues supports the observation of tissue-specific ACRs
that are stably unmethylated (Fig. 2F and SI Appendix, Figs. S2
and S3). In two cases of classic maize genes, tb1 (8) and
ZmRap2.7 (5), with defined long-distance enhancers, we find
that UMRs are stable in multiple tissues, including in leaf tissues,
where these genes are not appreciably expressed. In contrast,
ACRs at distal regulatory regions and gene-proximal regions
only occur in tissues with expression for both genes (Fig. 2F and
SI Appendix, Figs. S2 and S3). For both of these examples, the
gene itself is unmethylated in tissues with or without expression
(Fig. 2F and SI Appendix, Fig. S3). Combined, these observa-
tions suggest that UMRs defined on a single tissue may capture

regions with potential for accessibility in a variety of cell types or
tissues, thus providing a prediction of putative functionality.

UMRs Are Indicative of Expression Potential of Genes. To investigate
accessibility dynamics of UMRs, UMRs defined on seedling
leaf tissues were classified into two groups, accessible UMRs
(aUMRs) and inaccessible UMRs (iUMRs), depending on the
chromatin accessibility in seedling leaf tissue. In assessing the
functional relevance of the aUMRs and iUMRs, we first focused
on the UMRs found near gene transcription start sites (TSSs).
There are 32,196 UMRs that overlap with the proximal region of
maize genes (within 2 kb upstream or 1 kb downstream of the
TSS) and 12,867 ACRs within these regions. Nearly all (>98%)
of these ACRs overlap with a UMR (Fig. 3A). However, 60.7%
of UMRs that are located near gene TSS do not overlap an
ACR. Considering recent work that demonstrated DNA meth-
ylation levels near the ends of the genes could predict “expres-
sibility” of genes (3), we hypothesized that genes that are actively
expressed in the tissue used for documenting accessibility
(seedling leaf) would be enriched for ACRs/aUMRs, while genes
expressed in other tissues and silenced in seedling leaf would be
enriched for iUMRs. To do so, we gathered B73 RNA-seq data
across more than 240 different samples from tissues, conditions,
and developmental stages, including seedling leaf RNA-seq data
generated by Ricci et al. (12) (Dataset S5). Genes were classified
as “leaf expressed” if they were detected at >1 count per million
(cpm) in seedling leaf tissue. The remaining genes were classified
as “other tissue” if they were detected in at least one of the other
tissues (>1 cpm) or classified as “not expressed.” We classified
maize genes that are located in syntenic positions relative to other
grasses (47) as syntenic (Fig. 3B) and the remainder as non-
syntenic (SI Appendix, Fig. S4). We then examined the methyl-
ation and accessibility of the promoters (defined as 2 kb upstream
of TSS to 1 kb downstream of TSS) of these genes (Fig. 3B). In
some cases, the lack of properly annotated TSSs for some gene
models will lead to potential issues, as promoter proximal regions
will not be accurately defined. We then examined the methylation
and accessibilities patterns for each of the leaf-expressed, other-
expressed, and not-expressed categories. First, examining leaf-
expressed syntenic genes, we found that they are enriched for
aUMRs in the promoter-proximal region (Fig. 3B). However,
there are almost as many genes expressed in this tissue that con-
tain an iUMR, and these may reflect examples in which the ACR
region was too small to be effectively detected using ATAC-seq or
expressed with limited accessibility (Fig. 3B). Very few genes with
leaf expression lack UMRs and ACRs (Fig. 3B). Next, examining
syntenic genes that are expressed in other tissues, we find these are
less likely to contain an aUMR but frequently contain iUMRs
(Fig. 3B). A total of 1,323 genes expressed in other tissues (21.8%
of “other tissue-expressed”) contained an aUMR in their pro-
moters, representing genes that are possibly poised in leaf for
expression, have unstable transcripts or high transcript turnover,
or contain silencing trans-factors in their promoters precluding
their activation. We also identified cases where genes expressed in
other tissues have inaccessible but unmethylated promoters in leaf
tissue that become accessible in other tissues, such as NAC-
transcription factor 114 (nactf114/cuc3; Fig. 3C). This gene is si-
lent in leaf tissue but expressed in ear tissue (Fig. 3D), yet its
promoter is already unmethylated in leaf. Last, genes that are
never detected as expressed are much less likely to contain
aUMRs or iUMRs and more likely to be nonsyntenic (SI Ap-
pendix, Fig. S4). Nonsyntenic genes are likely enriched for pseu-
dogenes and transposon fragments compared to syntenic genes (2,
3); thus, these observations also suggest that UMRs and/or ACRs
could be useful for discriminating true genes from other classes
of gene.
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Leaf UMRs Are Enriched for Transcription Factor Binding Sites. The
concept that unmethylated regions from a single tissue can re-
flect sites with regulatory potential in diverse developmental
stages or tissues suggests that UMRs from a single tissue could
predict potential transcription factor (TF) binding sites, even for
TFs only expressed in other tissues. We tested this concept in
two different ways. First, we used the combined DAP-seq pro-
files for 32 maize TFs (12, 48) (Dataset S6). While these DAP-
seq enriched regions only represent ∼1/10 of the genome, they

account for 73% of the unmethylated regions and are enriched
for both iUMRs and aUMRs (Fig. 4A). Relative to a set of
randomized control regions, there is evidence for enrichment
(P < 0.001) of both aUMRs and iUMRs within the regions
identified by DAP-seq (Fig. 4A). Second, we used ChIP-seq data for
five maize TFs, FASCIATED EAR4 (FEA4), KNOTTED1 (KN1),
OPAQUE2 (O2), RAMOSA1 (RA1), and PERICARP COLOR1
(P1) (49–53). Notably, none of these TFs are highly expressed in
seedling leaf tissues (Fig. 4B and SI Appendix, Figs. S5–S10), but are

A B

C D

Fig. 3. Gene-proximal “promoter” unmethylated regions in maize. (A) Unmethylated regions (UMRs) in gene promoters overlapped with accessible chro-
matin regions also found in gene promoters (ACRs). (B) Relationship between expression of a gene and promoter accessibility and methylation for maize
genes syntenic within the grasses. (C) Example of a leaf promoter iUMR that may mark a gene for expression in another tissue. The promoter of the NAC-
transcription factor 114 (nactf114) Zm00001d031463 is unmethylated but inaccessible in leaf (iUMR, black arrow). The promoter region becomes accessible in
ear, and the gene is expressed in ear (RNA-seq). (D) The relative expression (FPKM) profile of nactf114 in representative tissues from the maize eFP browser.

A B

Fig. 4. Transcription factor binding site enrichment in UMRs. (A) The expected and observed proportion of UMRs that overlap transcription factor (TF)
binding sites identified using DAP-seq. UMRs that overlap TF binding sites are divided into aUMRs and iUMRs. (B) Overlap of leaf UMRs with TF binding sites
determined using ChIP-seq for TFs which are expressed and function in nonleaf tissues. The expression of each TF in leaf and nonleaf tissues is listed about
each plot. The tissues with maximum expression for each tissue are as follows: FEA4, stem and SAM; KN1, immature cob; O2, endosperm; RA1, immature cob;
P1, meiotic tassel. Expected ratios determined using a random set of regions of equal number and size to the relevant contrast. ***Overlap P < 0.001 based on
1,000 permutations of randomized control regions.
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expressed in other tissues or developmental stages. We were in-
terested in assessing whether the binding sites for these TFs were
unmethylated and inaccessible in the absence of their expression
(note that the leaf tissue used for methylation profiling comprises a
5-cm section from the leaf and excludes all tissue from the shoot
apex, including the meristem). For each TF, the number of ChIP-
seq peaks that overlap with aUMRs and iUMRs is greater than
expected by chance based on comparison to a set of randomly se-
lected regions (P < 0.001; Fig. 4B). However, the relative enrich-
ment is quite variable, as some TFs such as FEA4 and KN1 show
major enrichments but there is less enrichment for O2, RA1, and P1
(Fig. 4B). This could reflect technical variation in the quality of the
ChIP-seq datasets or may reflect differences in the potential for
some TFs to bind methylated or unmethylated DNA. While some
of the TF ChIP-seq peaks are found within aUMRs, there are many
that are found within UMRs that are inaccessible in leaf tissue.
Indeed, relative to the expected number of iUMRs, we find a sig-
nificant enrichment (P < 0.001) for ChIP-seq binding peaks within
UMRs for all of the five TFs (Fig. 4B). The observation that these
binding sites are highly enriched for iUMRs suggests that the
UMRs from this tissue can predict potential binding for these TFs
in other developmental stages.

Evidence for Enrichment of Distinct Chromatin Features at Distal
UMRs. Cloning of agronomically important QTLs has revealed
several examples of important distal cis-regulatory regions that
control expression of genes that are tens to hundreds of kb away
(5–8). Recent studies in maize have found evidence for many
putative distal CREs based on accessible chromatin, chromatin
modifications, and three-dimensional chromatin interactions (4,
12, 17–19). There are many distal aUMRs and iUMRs that are
located at least 2 kb from the nearest annotated gene (Fig. 1B).
These capture the majority of distal ACRs identified by ATAC-
seq, even when these ACRs are not found in seedling leaf tissue
(Fig. 2E). We were interested in assessing whether the lack of
DNA methylation at these distal regions was associated with
unique chromatin profiles or function, especially for the iUMRs.
The chromatin modifications from B73 seedling leaf tissue pro-
filed by Ricci et al. (12) were used to compare the chromatin
within and surrounding distal iUMRs and aUMRs with a set of
random intergenic regions (Fig. 5A). Analysis of ATAC-seq data
from seedling leaf tissue confirmed the lack of accessible chro-
matin at iUMRs (Fig. 5A). Both aUMRs and iUMRs exhibit
altered profiles of many chromatin modifications relative to
control regions both within the UMR and the flanking 1-kb re-
gions. The most striking difference between aUMRs and iUMRs is
observed for H3K4me1; aUMRs tend to have quite low levels of
this modification and are depleted for this mark in flanking re-
gions. In contrast, iUMRs show a strong enrichment for H3K4me1
(Fig. 5A). This histone covalent modification is intriguing because
it is a characteristic mark of mammalian enhancers (54); in con-
trast, enhancers in plants so far notably lack a common chromatin
signature (4, 12) such as the H3K4me1 mark in mammals. The
majority of the other modifications examined exhibit similar trends
for both iUMRs and aUMRs (Fig. 5A). For some modifications,
such as H3K4me3, H3K27ac, K3K9ac, and H3K56ac, there are
slightly stronger enrichments for the aUMRs (Fig. 5A). In other
cases, such as H3K27me3, the profiles are similar but the iUMRs
have stronger enrichments. Both aUMRs and iUMRs are deleted
for H3K9me2, but the depletion is stronger within the UMR rel-
ative to flanking regions of aUMRs (Fig. 5A).
We proceeded to use several metrics developed by Ricci et al.

(12) to investigate chromatin interactions and potential enhancer
function for the iUMRs and aUMRs. We compared the propor-
tion of iUMRs and aUMRs that overlap with HiC, H3K4me3-
HiChIP, or H3K27me3-HiChIP loop edges (Fig. 5B and SI Ap-
pendix, Fig. S11). In each case, we compared these to an associated
control set of randomized intergenic regions. The iUMRs show

nearly the same level of enrichment as the aUMRs, suggesting that
these regions are frequently making contacts with other regions
and participate in chromatin looping. STARR-seq assays were
performed by Ricci et al. (12) to assess the potential for ACRs
to provide functional enhancer activity in maize leaf protoplasts.
Given that many of the iUMRs are associated with genes that are

A

B

C D

Fig. 5. The chromatin profile of gene-distal iUMRs. (A) The average en-
richment of chromatin modifications over aUMR and iUMRs. Normalized
read abundance in counts per million for ATAC-seq (ACRs) and ChIP-seq for
histone modifications is averaged over UMRs and the 1 kb upstream and
downstream. The UMR region is indicated by the shaded gray box. SE is
overlaid in a lighter shade. (B) Metaplot averages of normalized interaction
tags from H3K27me3 Hi-ChIP, H3K4me3 Hi-ChIP, and Hi-C in 4-kb windows
centered on iUMRs, aUMRs, and their respective controls. (C) Distribution of
enhancer activities (log2[RNA fragments per million/input fragments per
million]) for aUMRs, iUMRs, their respective control regions, and averages
from 10,000 Monte Carlo permutations of random intergenic regions (*P <
5e-108). (D) Metaplot of relative enrichment of significant GWAS hits in
10-kb windows centered on iUMRs and aUMRs.
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expressed in other tissues or ChIP-seq peaks for TFs that are not
expressed in leaf tissue, we did not expect the same level of en-
richment for enhancer activity in protoplasts from leaf tissue.
While the iUMRs show substantially less enhancer activity based
on leaf protoplast STARR-seq assays compared to aUMRs, we do
still see significant enrichment relative to control regions (Wil-
coxon rank-sum test P value <3.7e-108 and 10,000-permutations
empirical P value <1e-4) of matched intergenic sites (Fig. 5C). We
also assessed the frequency of GWAS hits at the iUMRs relative to
aUMRs (Fig. 5D). While the aUMRs show significant increase for
GWAS hits, there is less enrichment for iUMRs. Thus, aUMRs
can more frequently be associated with regions linked to trait
variation compared to iUMRs. This could be due to the fact that
constitutively expressed genes (which will contain aUMRs) will be
enriched for GWAS hits relative to tissue-specific expressed genes.
Alternatively, some iUMRs may be nonfunctional, which would
contribute to the lower GWAS enrichment. Overall, these analyses
suggest that iUMRs and aUMRs have unique chromatin profiles
relative to the other distal intergenic regions and that the iUMRs

often participate in chromatin loops. However, these iUMRs are
less often colocated with regions linked to trait variation.

The Utility of UMRs for Annotation and Discovery in Large Genomes.
These analyses were initially focused on maize given the avail-
ability of other datasets that could be used to assess potential
functions and roles of iUMRs. However, we predict that similar
numbers of iUMRs and aUMRs would be identified in other
cereals and grasses. We gathered DNA methylation and chro-
matin accessibility data for four other grasses (Dataset S1):
barley (Hordeum vulgare) (55), sorghum (Sorghum bicolor) and
Brachypodium (Brachypodium distachyon) (56), and rice (Oryza
sativa) (57). These species vary substantially in genome size, with
some species <500 Mb and others >4 Gb (Fig. 6A). The genome
size that could be assessed for DNA methylation varied,
with >1.5 Gb for maize and barley and <400 Mb for rice and
Brachypodium. Despite these major differences in total genome
size and the size of the genome for which DNA methylation
could be profiled, we find roughly similar amounts of UMRs
across all profiled species (Fig. 6A and Datasets S7–S10). This

B CA

D

E

Fig. 6. Similarity between the absolute size and features of the unmethylated portion of cereal and grass genomes. (A) Proportion (MB) of UMRs in five grass
genomes. (B) The genomic distribution of UMRs in each genome. (C) The proportion of genic, proximal, and distal regions of each genome comprised of
UMRs. Larger genomes, such as maize and barley, have a much larger intergenic space, and hence intergenic/distal UMRs are a much smaller fraction. (D)
Overlap between UMRs and ACRs in each species. Percentages refer to the percentage of ACRs that are unmethylated and captured by UMR profiling (not
corrected for missing data). (E) The methylation profile (distribution of methylation domains) of ACR regions in each species, excluding unmethylated regions.
For example, over 43.6% of the ACRs in barley overlap regions with missing methylation data, explaining the relative low overlap in D.
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suggests that the total genome space of UMRs is relatively
constant despite dramatic changes in overall genome size. This is
consistent with the finding that the total accessible space (ACR)
is similar in genomes of different sizes (4). The distribution of
genic, proximal, and distal UMRs varies between species but is
related to genome size (Fig. 6B and SI Appendix, Fig. S11). The
large genomes have more examples of distal UMRs and rela-
tively fewer proximal UMRs compared to small genomes. This
likely reflects the higher gene density in smaller genomes and
reduction in the amount of genome classified as distal intergenic.
If we assess the proportion of all genic, proximal, and distal
space in each genome that is classified as UMR, we find that the
amount of genic space within UMRs is quite similar for all
species (Fig. 6C). In contrast, the proportion of distal space that
is classified as UMR is much lower in species with large genomes
(Fig. 6C). This highlights the potential of DNA methylation to
reveal the subset of potentially functional intergenic space,
particularly in large genomes.
A comparison of the UMRs and ACRs for each species

revealed substantial overlap, the same as was observed in maize
(Fig. 6D). In most species, the vast majority of ACRs occur
within UMRs. The proportion of overlap is the smallest for barley.
However, when we assessed ACRs failing to overlap with UMRs,
we found that, for all species, the vast majority of these represent
either unmethylated tiles that did not meet the criteria for UMRs
or had missing data (Fig. 6E). There are very few examples of
ACRs in any of the species that are classified as having high levels
of heterochromatic DNA methylation. The observation that some
ACRs are not captured within the classified UMRs due to missing
data for DNA methylation highlights the importance of deep-
coverage methylation datasets for use in annotation of UMRs.
The barley methylome dataset is only ∼4.6× (Dataset S1), and this
results in a substantial amount of genomic space that does not
have sufficient sequencing depth for accurate classification of the
DNA methylation state.

Discussion
The annotation of genomes remains a difficult problem, espe-
cially the discovery of putative regulatory elements. Document-
ing tissue- or cell-specific expression levels and chromatin states
has been successfully applied to improve annotations using
ENCODE-like approaches (58–61). However, generating com-
prehensive atlases of expression or chromatin in many cell types
and conditions can be experimentally challenging and costly.
Here, we suggest that identification of the unmethylated portions
of crop genomes from a single tissue can help provide fairly
complete catalogs of potential regulatory elements and expressed
genes across many developmental stages. The advantage to this
approach is that it can be performed on a single, easily harvested
tissue type. Prior reports in both plants (29, 38) and animals (62,
63) have identified very large unmethylated regions, tens of kb in
size, termed valleys or canyons. In contrast, we focused on UMRs
marking putative regulatory regions, which are smaller in size, 1.1
kb on average with the majority less than 1 kb. With our higher-
coverage datasets, for example, in maize and Brachypodium,
around 94% of ACRs overlapped UMRs, and it is not clear if this
overlap could be increased further. A small percentage of ATAC-
seq peaks had some apparent level of methylation (either CG
only, heterochromatin, or RdDM). This may in part be due to
technical differences between WGBS and ATAC-seq data gen-
eration and analysis. In some cases, the specific boundaries of the
ACR may be in the middle of a 100-bp tile used for classifying
methylation, and a tile could include part of a region with high
methylation and part with low methylation. As we noted in our
comparison of species (Fig. 6), it is important to generate a rela-
tively deep-coverage dataset of DNA methylation to maximize the
amount of the genome that is confidently classified as methyl-
ated or unmethylated. Even with deep coverage, monitoring both

UMRs and ACRs within highly repetitive regions remains chal-
lenging. In maize, we are only able to profile methylation levels for
76% of the genome with a relatively deep-coverage dataset and
stringent coverage filter. By lowering the required coverage
threshold to ×3, we increased coverage to 82% of the genome,
which was sufficient to identify UMRs. Around 6% of the genome
lacks a sufficient number of cytosines, and the remainder is too
repetitive to allow unique mapping using short reads. We rec-
ommend ∼10× average cytosine coverage per strand after quality
filtering and alignment as a prudent target for analysis of
unmethylated regions.
It is worth noting that this conceptual framework—using

UMRs from a single tissue to develop a catalog of potential reg-
ulatory elements and expressed genes—relies upon the stability of
CG and CHG methylation in different cell types. While CG meth-
ylation can be quite variable in different cell types for mammals (64),
the CG and CHGmethylation patterns are dramatically more stable
in plants. There are examples of dynamic CHH methylation in
different tissues in plants (37–42), and there is also evidence that
some specific cell types undergo substantial changes in the methyl-
ation during reproduction (32–34). However, the bulk of the ge-
nome exhibits an often underappreciated consistency in the patterns
of DNA methylation among different vegetative tissues (22–24).
One application of the UMR framework is to identify genes

that have potential for expression. In maize and other crop ge-
nomes, it is difficult to discriminate transposon-derived gene
fragments from true genes (1, 65). Annotation of genes requires
a balancing between quality and comprehensiveness (65). In
many cases, the desire to have a relatively complete set of pu-
tative genes results in numerous pseudogenes being included in
gene annotations. Prior work has shown that applying machine
learning to the patterns of context-specific levels of DNA meth-
ylation can classify genes with potential for expression (3). Here
we show that the majority of genes that are detected as expressed
(in a panel of >200 samples) contain an unmethylated region close
to their annotated TSS. The presence of a UMR within the pro-
moter of a putative gene can be used to indicate the potential for
expression of the gene. Several other studies have implemented
different approaches to use DNA methylation data to augment
gene annotations (2, 3).
UMRs can also be used to discover potential regulatory ele-

ments. UMRs are enriched for TF-binding sites based on DAP-
seq or ChIP-seq datasets. It is especially noteworthy that this
enrichment for TF binding is observed even though the UMRs
are defined in a tissue type where most of these TFs are very low-
expressed or silent. There are also many examples of tissue-
specific ACRs that are equally unmethylated across multiple tis-
sues. This suggests that, in plant genomes, the majority of regions
with potential to be TF binding sites in some tissue, developmental
stage, or environment are stably unmethylated. While the appli-
cation of chromatin-accessibility assays or TF-binding assays in a
specific tissue can provide a very high-quality representation of the
active regulatory elements in that tissue, here we show that it is
possible to rapidly develop a far more complete set of potential
regulatory elements through the analysis of DNA methylation
profiles from a single tissue.
The utility of a methylation filter to focus on unmethylated

regions may be variable across different species. In species with
relatively small genomes, for example <500 Mb, and limited
intergenic space, the filtering power of focusing on unmethylated
regions is likely diminished. In a species like Arabidopsis thaliana,
most genes are arranged in close proximity to other genes, and
the amount of the genome that could be masked as methylated is
relatively small (66). In contrast, in species such as barley or
maize with large genomes and low gene density, the ability to
focus on the unmethylated portions of the genome provides a
powerful framework to distill an enormous genome down to a
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relatively small fraction of genomic space: highly enriched regions
valuable for regulation or manipulation of plant traits.

Methods
WGBS Data. Whole-genome bisulfite sequencing samples are listed in Data-
set S1. For deep-coverage maize leaf data generated in this study, DNA was
extracted from leaves of 2-wk-old V2 glasshouse-grown maize B73 plants
using the DNeasy Plant Mini kit (Qiagen). Six biological replicates were
sampled for sequencing and later combined into a single data set. Details of
library preparation are provided in the SI Appendix. WGBS data generated
in this study are available under accession code GSE150929. Additional
maize seedling leaf (SRR8740851) and seedling root (SRR8740850) samples
were described previously (46) and downloaded from SRA PRJNA527657.
WGBS data for other species were downloaded from SRA, including barley
leaf (H. vulgare accession Morex) SRR5124893 (55), sorghum leaf (S. bicolor
accession code BTx623) SRR3286309 (56), rice leaf (O. sativa accession Nip-
ponbare) SRX205364 (57), and Brachypodium leaf (B. distachyon accession
code Bd21) SRX1656912 (56). Sequencing reads were processed as detailed in
the SI Appendix and aligned with bsmap v2.74 (67) to the respective genomes.
WGBS pipelines are available on GitHub (https://github.com/pedrocrisp/
springerlab_methylation).

Identification of Unmethylated Regions. To identify unmethylated regions,
each 100-bp tile of the genomewas classified into one of six domains or types,
including “missing data” (including “no data” and “no sites”), “RdDM,”
“heterochromatin,” “CG-only,” “unmethylated,” or “intermediate,” accord-
ing to the hierarchy in Dataset S2 (also see SI Appendix, Fig. S1). Briefly, tiles
were classified as missing data if tiles had less than two cytosines in the rele-
vant context or if there was less than 5× coverage for maize or less than 3×
coverage when comparing the different grass species (owing to lower cover-
age in some species); RdDM if CHH methylation was greater than 15%; het-
erochromatin if CG and CHG methylation was 40% or greater; CG-only if CG
methylation was greater than 40%; unmethylated if CG, CHG, and CHH were
less than 10%; and intermediate if methylation was 10% or greater but less
than 40%. A breakdown of the proportion of tiles for each domain is detailed
in Dataset S1. Following tile classification, adjacent unmethylated tiles (UMTs)
were merged. To capture and combine any unmethylated regions that were
fragmented by a short interval of missing data (low coverage or no sites), any
merged UMT regions that were separated by missing data were also merged
so long as the resulting merged region consisted of no more than 33%missing
data. Regions less than 300 bp were removed (SI Appendix, Fig. S1 C and D)
because they were depleted of accessible regions, with 99.5% inaccessible.
Some very short UMRs could be functional, but thus far, we have limited ev-
idence for functionality. The remaining regions were defined as unmethylated
regions (UMRs). We classified UMRs within 2,000 bp of the annotated TSS as
gene-proximal or -distal if greater than 2,000 bp as described in Ricci et al. (12);
however, where a UMR overlapped both the gene locus and the gene-
proximal region, it was hierarchically classified as proximal.

ATAC-Seq Data. For maize root ATAC-seq data generated in this study, Z.
mays (accession B73) was grown in soil for around 6 d at 25 °C under 16 h
light–8 h dark. The staple roots were harvested and were used for experi-
ments. ATAC-seq was performed as described previously (68) and described
in detail in the SI Appendix. ATAC-seq raw reads were aligned as described
before (4, 12), and a summary is outlined in the SI Appendix. ATAC-seq data
generated in this study are available under GEO accession code GSE152046.
ATAC-seq data for maize leaf and ear were as described in Ricci et al. (12),
and the coordinates of accessible chromatin regions were downloaded from

the GEO archive, accession code GSE120304. ATAC-seq data for barley (H.
vulgare accession Morex), sorghum (S. bicolor accession code BTx623), rice
(O. sativa accession Nipponbare), and Brachypodium (B. distachyon accession
code Bd21) are as described in Lu et al. (4), and the coordinates of accessible
chromatin regions were downloaded from the GEO archive, accession code
GSE128434.

Expression Data. RNA-seq expression data for maize leaf and ear (12) as well
as 247 samples for other maize tissues (69–78) were downloaded from NCBI
Sequence Read Archive and processed as described in Zhou et al. (79) and
detailed in the SI Appendix. Synteny classifications (i.e., syntenic and non-
syntenic) and assignment to maize subgenomes were obtained from a pre-
vious study based on pairwise whole-genome alignment between maize and
sorghum, downloaded from Figshare (Schnable et al., 2019; DOI 10.6084/m9.
figshare.7926674.v1) (47). The eFP browser expression data were down-
loaded from bar (80) hosted on Maize GDB incorporating the maize ex-
pression datasets (76, 81). The expression of fea4, kn1, o2, ra1, and p1 in leaf
was evaluated considering the samples: pooled leaves V1, topmost leaf V3,
tip of stage 2 leaf V5, base of stage 2 leaf V5, tip of stage 2 leaf V7, base of
stage 2 leaf V7, immature leaf V9, 13th leaf V9, 11th leaf V9, 8th leaf V9,
13th leaf VT, and 13th leaf R2.

Transcription Factor DAP-Seq and ChIP-Seq. DAP-seq profiles for 32 maize TFs
(12, 48) (Dataset S6) were downloaded from the SRA, as were ChIP-seq for
five TFs: KNOTTED1 (KN1) (49), RAMOSA1 (RA1) (50), fasciated ear4 (FEA4)
(51), Opaque2 (O2) (53), and PERICARP COLOR 1 (p1) (52). Sequencing data
were downloaded from NCBI using the SRA Toolkit and processed using the
nf-core ChIP-seq pipeline (82) (detailed description provided in the SI Ap-
pendix). Randomized control regions were generated using bedtools shuf-
fle, and comparison with UMRs evaluated with 1,000 permutations using
regioneR. Pipeline scripts, QC files, and peak calling results and annotation
are available at GitHub (https://github.com/orionzhou/chipseq).

Analysis of Histone Modifications. Chromatin immunoprecipitation followed
by high-throughput sequencing (ChIP-seq) data for H3K3me1, H3K3me3,
H3K27ac, H3K9ac, H3K56ac, H3K27me3, and H3K9me2 chromatin modifi-
cation as reported by Ricci et al. (12) were downloaded from the GEO da-
tabase, accession GSE120304, and processed as described in the SI Appendix.

Analysis of Hi-C, Hi-ChIP, STARR-Seq, and GWAS Data. Raw and processed Hi-C,
Hi-ChIP, and STARR-seq data were acquired from Ricci et al. (12) and ana-
lyzed as detailed in the SI Appendix. Genomic positions of significant GWAS
hits were obtained from Wallace et al. (83), and GWAS hits and SNPs in the
NAM founder lines were downloaded from cyverse. Relative GWAS enrich-
ment per bin was estimated as detailed in the SI Appendix.

Data Availability. ATAC-seq (fastq) data have been deposited in GEO
(accession no. GSE152046).
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